api 2007 technologies corp.

Scaleable AAAU

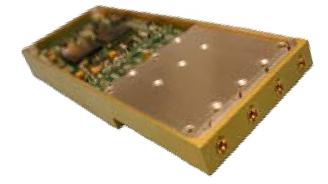
(Active Antenna Array Unit) Constructed from common building blocks QTRMs, contained with in an moduler Plank assembly. Multiple applications Datalinks, Satcom & Radar. Plantform diverse.

- Consists of multiple QTRMs
- Incorporates RF Manifold & printed antenna elements
- Ease of assembly and maintenance
- Incorporates liquid 'cooling' solution
- Re-configurable

QTRM

- Common module 'Building Block'
- 4-Channel integrated assembly comprising of DC, Logic CTRL/Interface & T/R Module
- Designed for high volume manufacture
- Minimal alignment, custom ATE for factory 'calibration'

www.apitech.com



X-Band QTRM Product Capability

QTRM - Quad Transmit Receive Module (4-Channel T/R Module)

- RS485 Half-Duplex, 5.0 Mbps serial data bus for control and monitoring.
- DSP externally programmable via JTAG
- Factory amplitude and phase setting inaccuracies calibrated at the cold-wall operating temperature
- TX output power, HPA temperature, operating current and power supply health monitored and reported on request
- Automatic shut-down if internal temperature reaches a critical limit where damage could occur. Hysteresis applies.
- Positive supplies inhibited (with the exception of the digital control circuits) if negative supply is lost
- Direction cosines used for beam steering
- 4-bit array address code giving up to 16 QTRM sub-array (64- element array)
- TRM's respond to individual address or broadcast messages.
- Module position assignment
- Ability to schedule up to 16 phase & amplitude settings for rapid execution.
- Array CAL allows end-user to add additional TRU phase & amplitude calibration.
- Read-back of set phase & amplitude values for each TRU.
- Selection of internal/external Clock source.
- European Manufacture.

Electrical Performance

Over T_{op} Unless Otherwise stated. Limits & Conditions are indicated values. Indicated values given per channel unless otherwise stated.

Parameter	Min.	Тур.	Max.	Units	Conditions		
Parameters: Common							
Centre Frequency		9.5		GHz			
Operating BW		1		GHz	See Note 1		
TX/RX Switching Speed			50	ns	Target. From receipt of Gating pulse.		
Port-Port Isolation (Antenna)	40			dB	Target 60dB		
Input Return Loss	10			dB			
Output Return Loss (Antenna)	10			dB			
Pulse Width	0.2		100	μS	POUL at 2004 Duty may		
Duty Cycle	5		30	%	80μS at 30% Duty max.		
RF Pulse Rise & Fall time		20		ns			
Data Control Rate		5.0		Mbps	Asynchronous UART RS485 Bus.		
Global TX Gating Pulse		Differential			Gate TX PA on 1.0 μS before RF pulse		
Beam Steering Pulse		Differential					
No. of Stored Beam Settings			16		Scheduler Mode		
Beam Steer Pulse Repetition Rate	15		250	μS	Scheduler Mode – Beam direction change rate.		
Power Supplies		+28,+6,-6		V			
Ext. Clock (If used)				MHz	±20ppm LVDS		
			6	Amps (pk)	+28v supply, TX mode		
DC Input CurrentPort)			1.8	Amps	+6v supply, TX mode		
			0.2	Amps	-6v supply		
DC Input Consumption (Pk)			170	Watts (pk)	TX mode		
Phase Control							
Phase Shift Range	0		355	deg	6-Bits, 64 States, 5.625° Steps.		
RMS Error							
9.0 – 10.0GHz	2		4	deg	See Note (2)		
Switching Time		500		ns	Target. From receipt of Beam Steer pulse.		
Amplitude Control							
Attenuator Range	0		28.5	dB	5-Bits, 32 States, 0.9dB Steps. See Note (3)		
RMS Error							
9.0 – 10.0GHz	0.4		0.6	dB	See Note (4)		
Switching Time		500		ns	Target. From receipt of Beam Steer pulse.		

Enviromental

Operating Ambient: -30 to +70°C. Assumes QTRM is fixed to a cold-wall held at 35 ± 10 °C Storage: -40 to +85°C; MTBF : 100,000 hrs target

Notes

(1) Can operate over a wider bandwidth at reduced performance. Limited by circulator bandwidth.

- (2) RMS Phase error given for reference attenuator state.
- (3) Up to 3dB reduction in useable attenuation range due to Calibration.
- (4) RMS Attenuator error given for reference phase state.
- (5) Figure given for Ref Attenuator state, Ref Phase State.
- (6) Noise Figure given for Ref Attenuator state, Ref Phase State.

Electrical Performance

Over T_{OP} Unless Otherwise stated. Limits & Conditions are indicated values. Indicated values given per channel unless otherwise stated.

Parameter	Min.	Тур.	Max.	Units	Conditions	
Parameters: Transmit						
TX Psat		8.5		Watts (pk)	8.5 Watts output per antenna at Fo	
TX Gain		>40		dB	8.5 to 10.5GHz	
TX Power Variation		± 0.5		dB	Per 100MHz in operating bandwidth	
TX Power Variation		±1.0			9.0 to 10.0GHz	
Power Variation Between Outputs		±1.0		dB		
TX Input Power Level		+5		dBm	For Ps at Out.	
Spurious		-60		dBc		
TX Phase Variation across pulse		4.0		deg	Across 80µS Pulse at 30% Duty	
TX Amplitude Variation across pulse		0.5		dB	Across 80µS Pulse at 30% Duty	
Harmonics		-20		dBc		
TX Insertion Phase Balance		±15		deg	Between any two channels.Target ±10	
TX Insertion Phase Balance		±2.0		dB	Between any two channels. Target ± 1.0	
		Paramete	ers: Receiv	e		
RX P1dB		12		dBm		
RX Gain		35		dB	See Note (5)	
RX Input IP3		-15		dBm		
RX Gain Variation		±0.25		dB	Per 100MHz in operating bandwidth	
RX Gain Variation		±1.5		dB	9.0 to 10.0GHz	
RX Noise Figure			3.5	dB	See Note (6). Target <3dB	
Receiver Protection			10	Watts (pk)	Protection from reflected TX Power	
RX Insertion Phase Balance		±15		deg	Between any two channels.Target ± 10	
RX Gain Balance		±2.0		dB	Between any two channels.Target ± 1.0	
Recovery Time		100		ns		
Spurious Free Dynamic Range		88		dB	5MHz Bandwidth	

Mechanical

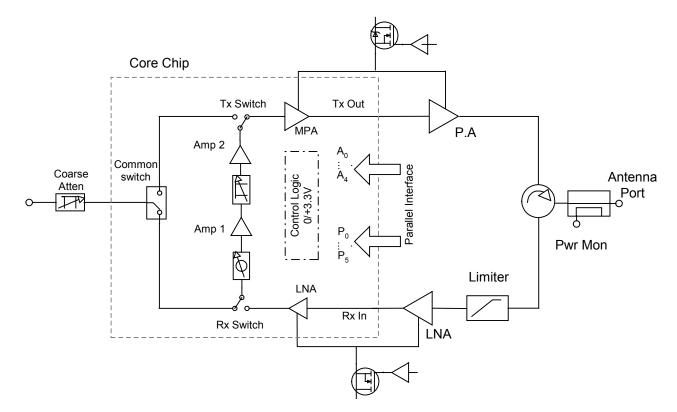
Size: 150(L) x 59.5(W) x 14.5mm(D) excluding connectors

Mass: < 200gm, target <150gm

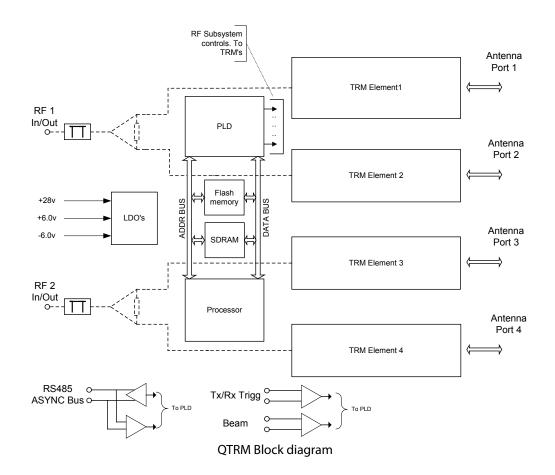
RF Connectors: Male GPO hermetic shroud (Corning Gilbert)

DC Connectors: 177-704H37SS (Glenair Hermetic Micro-D)

Cooling Method: Heatsink mounted, forced air cooled for demonstration purposes.


(Unit designed to mount against a liquid cooled cold-wall, meeting height constraints for stacked QTRM's in X and Y to form a 2D array)

Notes


(1) Can operate over a wider bandwidth at reduced performance. Limited by circulator bandwidth.

- (2) RMS Phase error given for reference attenuator state.
- (3) Up to 3dB reduction in useable attenuation range due to Calibration.
- (4) RMS Attenuator error given for reference phase state.
- (5) Figure given for Ref Attenuator state, Ref Phase State.
- (6) Noise Figure given for Ref Attenuator state, Ref Phase State.

Functional Block Diagram

TRM Element Block diagram

Typical Performance

DC Pin-Out Connection's (MWDM2L-37 Series)

Pin No.	Description	Pin No.	Description	Pin No.	Description	Pin No.	Description
1 ₍₇₎	Ext_CLK +ve	11	ADDR_4	21	+6V	31	Beam +ve
2 ₍₇₎	Ext_CLK -ve	12 ₍₈₎	WD_DIS_DSP	22	GND	32	TxPreTrigg +ve
3	ADDR_5	13(8)	EM_VDD	23	GND	33	Beam -ve
4	Spare	14 ₍₈₎	TDO_DSP	24	GND	34	+28V
5	Spare	15 ₍₈₎	TMS_DSP	25	GND	35	+28V
6	GND	16 ₍₈₎	TRSTn_DSP	26	GND	36	+28V
7	ADDR_0	17 ₍₈₎	EMUn_DSP	27	GND	37	+28V
8	ADDR_1	18(8)	TDI_DSP	28	RS485 -ve		
9	ADDR_2	19 ₍₈₎	TCK_DSP	29	RS485 +ve		
10	ADDR_3	20	-6V	30	Tx PreTrigg -ve		

Notes

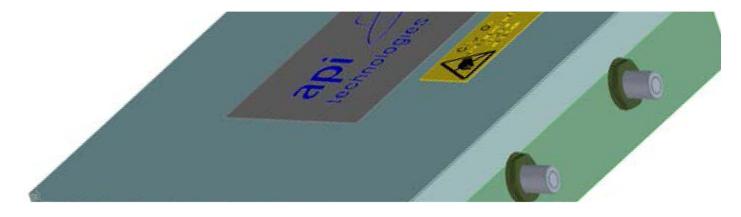
(7) External Clock (if used) 100MHz LVDS ±20ppm

(8) For Factory use only, do not connect leave open circuit.

Whilst every effort is made to ensure the accuracy of the information contained in this brochure, no responsibility can be accepted for any errors and/or omissions.

Descriptions and specifications of products are subject to change without notice.

+1 855.294.3800


+44 (0) 1908.574.200 info.rf2m@apitech.com micro.apitech.com

4通道C頻段發射接收模組

C-Band QTRM Product Capability

QTRM - Quad Transmit Receive Module (4-Channel T/R Module)

- Gallium Nitride Power Amplifier Technology
- 1GHz Bandwidth
- Low Noise Figure (<4.5dB)
- 6-Bit Phase Control
- 6-Bit Attenuator Control
- Single +28V Supply
- BITE and PSU Supervisory
- Built in Tx and Rx Power BITE Detectors
- Factory Calibrated
- Accessible memory for External Calibration data
- Cooling interface
- Designed to fit Typical Antenna Aperture Spacing
- Line Replaceable Unit
- European Manufacture.

主動式電子掃描陣列(AESA)使用

TEL:886-2-2957-9823 · FAX:886-2-2957-9712 http://www.nearson.com.tw

Description

The C-Band Module contains four Transmit/Receive (T/R) channels providing four RF ports which can be connected to individual antenna elements to form part of a phased array active antenna unit.

The module is fitted with blind mate RF connectors and its height and antenna port spacing dimensions are specifically designed to allow direct connection to the back of antenna aperture face. Alternatively, RF cable assemblies may be used to connect to the individual antenna elements.

The power amplifier section of each channel incorporates Gallium Nitride technology, this along with provision for liquid cooling allows high power levels, long pulse widths and high duty cycles to be realised.

The Module is supplied from a single 28 volt DC supply and contains the necessary supply conditioning to power the four channels. Built in power supply sequencing and built in test equipment (BITE) functions are included to allow individual channel monitoring and shut-down in the presence of a fault condition.

Module communication for control and monitoring is provided by a half-duplex, asynchronous serial EIA485 bus.

The serial data takes the form of a number of messages assigned to either control the individual T/R channels or to retrieve information about the module's settings or health status. RF2M have developed a Graphical User Interface (GUI) to control and monitor the module which can be run from a laptop or desktop computer.

Each module has a unique address which may be interrogated by an external controller; this allows the external controller to address and individual module within an array.

The QTRM's are factory calibrated to minimise amplitude and phase variations over temperature and frequency, making them line-replaceable units. Additional calibration constants that are User system related (such as the interface between the radiating element to T/R channel and any associated antenna taper requirements) can be uploaded to the module via the EIA485 serial data link.

The QTRM supports 'scaleable' AESA Radar thus providing flexibility for different platforms applications.

Mechanical

Approximate Size: 150 mm(L) x 128 mm(W) x 28 mm(H) excluding connectors Approximate Mass: 1.2 Kg RF Connectors: Male SMP DC Connectors : 37-way Micro-D (Power Supply & Control) and 15-way Micro-D (Factory Use Only) plugs Hydraulic Connectors : Staubli non-spill CGO 03 type or Similar Cooling Fluid : Glycol Mix Inlet Temperature: +48°C max. Fluid Flow Rate : 1Litre/min Typ Pressure Drop : < 0.2 bar with a fluid flow rate of 1L/min

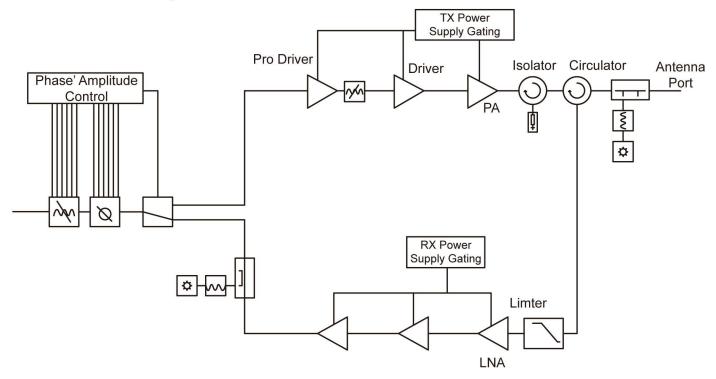
Environmental

Operating Ambient: -40 to +70°C Dependent upon Transmit Pulse Width, Duty Cycle and Inlet Cooling Fluid Temperature.

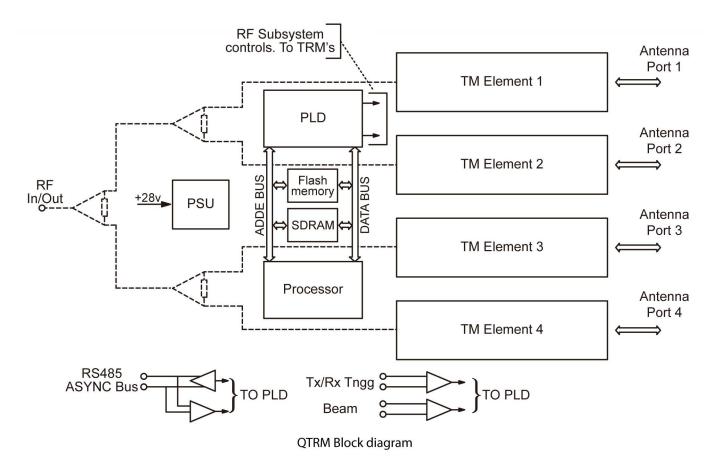
Storage: -40 to +85°C

NOTES

- (1) Up to 3dB reduction in useable attenuation range due to factory Calibration
- (2) Gallium Nitride Power Amplifier technology enables long pulse durations
- (3) Figure given for Ref Attenuator state, Ref Phase State


Electrical Performance

 $Over\,T_{_{OP}}$ Unless Otherwise stated. Limits & Conditions are indicated values. Indicated values given per channel unless otherwise stated.


Parameter	Min.	Тур.	Max.	Units	Conditions	
Parameters: Common						
Centre Frequency		5		GHz		
Operating BW		1		GHz		
Input Return Loss		12		dB	Common RF In/Out port	
Output Return Loss		12		dB	Individual Antenna ports	
RS485 Serial Data Bus		Differential			Asynchronous UART, half-duplex	
Data Control Rate		5.0		Mbps	Asynchronous UART RS485 Bus.	
TX PA Gating Pulse		Differential				
Beam Steering Pulse		Differential			Triggers Beam Direction change	
No. of Stored Beam Settings			16		Scheduler Mode	
Beam Steers Data Transfer Time			350	μS	Time taken to re-load Scheduler register	
Supply Voltage		+28		Volts		
Supply Current		7.5		Amps	Average current @ 28v. 50% duty	
DC Input Consumption		210		Watts	Average power @ 28v. 50% duty	
Amplitude Control						
Attenuation Range		31.5		dB	6-Bits, LSB = 0.5dB, See Note 1	
RMS Attenuation Error			1.5	dB	Reference Phase State	
Phase Control						
Phase Shift Range		355		deg	6 -Bits, LSB = 5.62°	
RMS Phase Error			4.5	deg	Reference Attenuation State	

Parameter	Min.	Тур.	Max.	Units	Conditions		
Parameters: Transmit							
TX Psat		8.5		Watts(pk)	Per Channel		
TX Input Power Level		+18		dBm	For Saturated Power		
Spurious		-60		dBc			
Pulse Droop		0.2		dB	100 μS, 10% Duty Cycle		
Pulse Droop (Long Pulse)		0.4		dB	40 mS, 80% Duty Cycle, See Note 2		
Harmonics		-30		dBc			
TX Insertion Phase Balance		±15		deg			
TX Power Balance		±1.25		dB			
		Paramete	ers: Recei	ve			
RX Output P1dB		+6		dBm			
RX Gain		15.5		dB	See Note 3		
RX Noise Figure			4.5	dB			
Receiver Protection per Channel		100		dB	300 μS Pulse		
RX Insetion Phase Balance		±15		dB			
RX Gain Balance		±1.25		dB			

Functional Block Diagram

Whilst every effort is made to ensure the accuracy of the information contained in this brochure, no responsibility can be accepted for any errors and/or omissions. Descriptions and specifications of products are subject to change without notice.

+1 855.294.3800

+44 (0) 1908.574.200 info.rf2m@apitech.com micro.apitech.com